
Sena Technologies, Inc.

__

__-

- 1/15 -

HelloDevice Super Series

User Customization Guide

Version 1.2.1

2015-09-179

Sena Technologies, Inc.

__

__-

- 2/15 -

Copyright Information

Copyright 1998-2015, Sena Technologies, Inc. All rights reserved.

Sena Technologies reserves the right to make any changes and improvements to its product without providing prior notice.

Trademark Information

HelloDevice™ is a trademark of Sena Technologies, Inc.

Technical Support

Tel: (+82-2) 573-5422

Fax: (+82-2) 573-7710

E-Mail: support@senaindustrial.com

Website: http://www.senaindustrial.com

mailto:support@senaindustrial.com
http://www.senaindustrial.com/

Sena Technologies, Inc.

__

__-

- 3/15 -

Revision history

Revision Date Name Description

V0.0.1 2003-09-09 H. Yeom Initial Draft

V1.0.0 2003-09-22 H. Yeom Initial Release

V1.1.0 2004-01-12 H. Yeom GDB support and sample filter programs are added

V1.2.0 2011-03-08 JOJ Added descriptions for NFS support to Section 3.1

V1.2.1 2015-09-09 W.K. Kim Updates the contact information of technical support and links

Sena Technologies, Inc.

__

__-

- 4/15 -

Content

1. Overview... 5

2. SDK (Software Development Kit).. 5

3. How to build user programs? .. 6

3.1. Preparing .. 6

3.2. Coding ... 7

3.3. Uploading Files .. 7

3.4. Building and Executing ... 7

4. User Web Customization .. 7

4.1. HTML Files ... 7

4.2. CGI files .. 7

4.3. Java applets and so on ... 9

5. User Filter Customization ... 9

5.1. Understanding Filter Programs 9

5.2. Building Filter Program 10

5.3. Filter Samples .. 10

6. Debugging with GDB .. 11

6.1. Debugging sample filter program with GDB 12

Sena Technologies, Inc.

__

__-

- 5/15 -

1. Overview

The HelloDevice Super Series is a serial to Ethernet programmable communication gateway for

RS-232/422/485 based serial devices with various customization options.

Sena provides easy to use Software Development Kit (SDK) environment to quickly develop

custom applications that run on the HelloDevice Super Series. Users can customize the web

management interface, and integrate the programmed dynamic web pages to web menu.

In addition, user can manipulate the data stream which routes from serial device to socket and

socket to serial device. The user-defined filter program communicates with other programs that are

reading/writing serial port and socket by using FIFOs, and so user can easily manipulate the serial

data without programming related to serial port and socket. The unit runs the embedded Linux

Operating system and facilitates programming using command-line interface or one of several

prepared scripts, using UNIX / Linux commands.

2. SDK (Software Development Kit)

To make user’s own application code, SDK for SS110/400/800 is needed. SS110/400/800 SDK is

provided in the form of PC CF card (Please contact Sena Technical Support to get SDK for

SS110/400/800.). The SDK contains compiler, linker, library files, header files and some sample C files.

The directory structure of the SDK is as follows.

/mnt/flash bin

sample

lib

include

Binary files can be executed.
gcc, ld, ar, as, ...

Header files for SS applications.

Library files for SS application

web

filter

Sample C files for
web customization.

Sample C files for
filter customization.

Sena Technologies, Inc.

__

__-

- 6/15 -

3. How to build user programs?

3.1. Preparing

The development environment for customization of Super Series can be made by using CF card or by

using NFS.

3.1.1 Using CF card

Follow the below steps to prepare the development environment for customization.

1) Get a SDK for SS110/400/800 in the form of CF card.

2) Insert the SDK into the PCMCIA (PC card) slot of the SS device.

3) On the configuration menu, probe the PC card and then save and apply it.

3.1.2 Using NFS

If a CF card is not available, NFS(Network File System) can be used to make the development

environment for customization.

1) Install (Decompress) SDK on NFS server under the NFS exported directory of it.

2) Mount the exported directory on /mnt/flash directory of Super series from the CLI of Super

series.

3) Check the /mnt/flash directory if SDK files and directories can be accessed from it.

Example)

- Install SDK on NFS server

[root@localhost /]# cd /SS100SDK_NFS

[root@localhost SS100SDK_NFS]# ls

ss_sdk-v1.1.1.tar.gz

[root@localhost SS100SDK_NFS]# tar xzf ss_sdk-v1.1.1.tar.gz

[root@localhost SS100SDK_NFS]# ls

bin include lib sample ss_sdk-v1.1.1.tar.gz version

 where ss_sdk-v1.1.1.tar.gz = SDK of Super Series

 /SS100SDK_NFS = the exported directory of NFS server

- Mount the exported directory from the CLI of Super Series

root@SS100_Device:/mnt# mount -t nfs 192.168.17.12:/SS100SDK_NFS /mnt/flash/

root@SS100_Device:/mnt# ls /mnt/flash/

bin lib ss_sdk-v1.1.1.tar.gz

include sample version

 The syntax for mount command on the CLI of Super Series is

 mount –t nfs <NFS server IP address>:<NFS directory path> /mnt/flash

If CF card service is running on Super Series, it should be stopped first before running mount

command

Sena Technologies, Inc.

__

__-

- 7/15 -

3.2. Coding

Write source files in the C language and Makefiles. You can edit the source files on the Super

Series CLI but if it is uncomfortable, you can do it on PC or Linux box. Almost all the Linux libraries

are located at /mnt/flash/lib directory.

3.3. Uploading Files

If you edit the files on the Super Series CLI, skip over this section. To compile the source files,

you must have uploaded the files to the SS device. You can upload the files in three ways as follows.

A. SCP

B. FTP

C. Configuration menu

For more detail information, refer to the User Guide.

3.4. Building and Executing

Compile, link and execute the programs as follows. (Imagine, a program named prog consists of

two C source files proga.c and progb.c).

gcc –o prog proga.c progb.c

./prog

4. User Web Customization

4.1. HTML Files

You may customize the web management interface by adding your own HTML files in Super

Series. All the HTML files must be in the /usr2/usrweb directory. There is a sample HTML file that is

named index.html. Copy the file to /usr2/usrweb, and then you can see the HTML page like below.

4.2. CGI files

4.2.1 Building CGI files

Below is the procedure to build CGI files. Sample CGI source file is located at

Sena Technologies, Inc.

__

__-

- 8/15 -

/mnt/flash/sample/web/cgi/shell.c,

Step 1. Build the CGI file.

cd /mnt/flash/sample/web/cgi

make

Step 2. Copy the CGI file.

cp shell.cgi /usr2/cgi-bin/

Step 3. Execute a Web browser, connect to the SS110/400/800, and log in.

Step 4. At the Web browser, go to http://192.168.1.2/cgi-bin/shell.cgi. (Suppose that

the IP address of the SS110/400/800 is 192.168.1.2)

4.2.2 Using CGI files

The CGI files must be in the /usr2/cgi-bin directory. If there is a CGI file named default, the file can

be an entry page of the custom pages.

Here is a Makefile to make the shell.c.

CC = gcc

BIN = shell.cgi

OBJS = shell.o util_cgi.o

LDFLAG = -L/mnt/flash/lib

BIN : $(OBJS)

 $(CC) -o $(BIN) $(OBJS) $(LDFLAG)

c.o :

 $(CC) -c $<

all : $(BIN)

clean :

 rm -f $(BIN) $(OBJS)

The util_cgi.h and util_cgi.c are attached at the Appendix A. These CGI programs

must be in the /usr2/cgi-bin directory.

Sena Technologies, Inc.

__

__-

- 9/15 -

4.3. Java applets and so on

JAVA applets are also available. The applet files and all web files except CGI program must be in

the /usr2/usrweb directory.

5. User Filter Customization

5.1. Understanding Filter Programs

SS110/400/800 uses FIFO method for inter-process communication. User can insert a program

to manipulate the data stream which routes from serial device to socket and socket to serial device.

The user-defined filter program communicates with other programs that are reading/writing serial port

and socket by using FIFOs.

Serial port Read/Write App.

Socket Read/Write App.

Filter App.

FIFOs

FIFOs

Remote Hosts

Serial Port

The user-defined filter reads a FIFO that is streaming the serial port data, manipulate the data and

write the manipulated data to a FIFO that is sent to socket. The data stream that goes from socket to

serial port can be manipulated in the same way. It must be satisfactory for following qualifications.

1) Write the data stream going to serial port to FIFO that is named

/tmp/port_fifos/portX_f2s (X is the port index based on 1).

2) Write the data stream going to serial port to FIFO that is named

/tmp/port_fifos/portX_f2e.

3) Read the data stream coming from serial port to FIFO that is named

/tmp/port_fifos/portX_s2f.

Sena Technologies, Inc.

__

__-

- 10/15 -

4) Read the data stream coming from socket to FIFO that is named

/tmp/port_fifos/portX_e2f.

5) Open four FIFOs on being executing and do not close the FIFOs except to be terminated.

6) Have more than one arguments and the first argument must indicate the port number.

7) Record the PID (Process ID) to the file that is named /var/run/portX_filter.pid.

(This PID file is used to terminate the filter application, but it is terminated only in case the

port is disabled.)

8) Be terminated when it receives the SIGTERM signal.

5.2. Building Filter Program

Below is the procedure to build Filter program. The sample programs are located at

/mnt/flash/sample/filter/ directory.

Step 1. Build a filter program.

cd /mnt/flash/sample/filter

make

Step 2. Copy one of sample filter programs to user space.

cp data_conversion /usr2/sample_filter

Step 3. Configure the filter application settings as follows:

5.3. Filter Samples

All sample programs are composed of three threads, one main thread, one reading on serial port

thread and one reading on socket thread. The main thread creates the other threads, and then waits

until SIGTERM signal is received. If main thread receives SIGTERM signal, it cancels the other

threads. The readings on serial port/socket threads are modified to its purpose.

- empty.c

This sample filter connects the serial port read/write application and socket read/write application

with FIFOs. It does not manipulate the data.

Sena Technologies, Inc.

__

__-

- 11/15 -

- periodic_command.c

This sample filter connects the serial port read/write application and socket read/write application

with FIFOs and writes a command to serial port periodically.

- data_conversion.c

This sample filter is an example for protocol conversion.

- data_calibration.c

This sample filter is an example that calculates the average of periodically incoming serial port

data (e.g. thermometer data, hygrometer data) and sends it.

- data_storing.c

This sample filter is an example that watches serial port data (e.g. thermometer data, hygrometer

data) and saves it to RAM disk.(under /tmp directory)

- data_event_handling.c

This sample filter is an example that watches serial port data (e.g. thermometer data, hygrometer

data) and sends SNMP traps.

- cq.c

Utility routines for circular queue.

6. Debugging with GDB

The SDK for HelloDevice Super Series supports GNU GDB debugger so that user can see what

is going on inside user program while it executes.

(Please note that GDB support is added from the SDK v1.1.0 or later)

GDB can do four main kinds of things to help user catch bugs in the act:

 Start your program, specifying anything that might affect its behavior

 Make user’s program stop on specified conditions

 Examine what has happened, when user’s program has stopped

 Change things in user’s program so user can experiment with correcting the effects of

one bug and go on to learn about another.

GDB is invoked with the shell command gdb. Once started, it reads commands from the terminal

until user tells it to exit with GDB command quit. User can get online help from gdb itself by using the

command help.

User can run gdb with no arguments or options; but the most usual way to start GDB is with one

argument or two, specifying an executable program as the argument.

Before run user program with GDB, user should compile his program with –g option.

Sena Technologies, Inc.

__

__-

- 12/15 -

6.1. Debugging sample filter program with GDB

This section describes how to debug sample filter program(data_conversion.c) with GDB

debugger step by step. To debug sample filter program properly, it is recommended that user should

set each parameters for serial ports previously using configuration tools such as Web UI or editconf.

And also disable all serial ports using configuration tools so that user can run each port functions

manually at the appropriate time.

Step 1. Copy sample program to user space

cp /mnt/flash/sample/filter/Makefile /usr2/

cp /mnt/flash/sample/filter/data_conversion.c /usr2/

cp /mnt/flash/sample/filter/cq.c /usr2/

cp /mnt/flash/sample/filter/cq.h /usr2/

Step 2. Modify Makefile to compile program with –g option.

 Add –g option to CFLAGS variable.

cd /usr2/

vi Makefile

...

//CFLAGS = -pipe

CFLAGS = -pipe –g

...

Step 3. Modify source program to fit it to run with GDB debugger.

 Remove do_daemon() and save_pid(portnum) functions calls.

 Please note that user should run his program on the foreground to debug it with GDB.

vi data_conversion.c

...

int main(int argc, char **argv)

{

 if (argc < 2) {

 fprintf(stderr, "\nUsage: %s [portnumber] [echo|no_echo]\n\n",

get_program_name(argv[0]));

 return -1;

 }

 portnum = atoi(argv[1]);

 if (argc>2 && !strcmp(argv[2], "no_echo")) echo_flag = 0;

 (void) signal(SIGTERM, handle_sigterm);

 (void) signal(SIGPIPE, handle_sigterm);

// Remark following two lines to run this program on the foreground

// do_daemon();

// save_pid(portnum);

 do_filter();

 close_fifos();

 return 0;

}

...

Step 4. Compile sample filter program.

Sena Technologies, Inc.

__

__-

- 13/15 -

make data_conversion

Step 5. Start serial port daemon(ss.port) and tcp socket daemon(ss.tcp) programs manually.

The ss.port is a daemon program for serial port and ss.tcp is a daemon program for tcp port.

These two programs are located under /bin directory of SS device.

Argument ‘1’ means that it is run for port #1.

ss.port 1

ss.tcp 1

ps –ef

PID Uid Stat Command

 1 root S init

 2 root S [keventd]

 3 root S [kswapd]

 4 root S [kreclaimd]

 5 root S [bdflush]

 6 root S [kupdate]

 8 root S [mtdblockd]

 35 root S [jffs2_gcd_mtd5]

 57 root S /sbin/cardmgr

 80 root S dhcpcd eth0

 87 root S /etc/rc.d/rc2.d/S19sslogger start

 97 root S /usr/sbin/inetd

 100 root S /usr/local/sbin/webs

 110 root S /usr/local/sbin/snmpd -c /usr/local/share/snmp/snmpd.conf

 113 root S /bin/linkupchecker -c 1

 118 root R /etc/rc.d/rc2.d/S53ss800mand start

 126 root S /etc/rc.d/rc2.d/S53ss800mand start

 128 root S /usr/sbin/cron

 129 root S -bash

523 root S ss.port 1

 524 root S ss.port 1

 525 root S ss.port 1

 526 root S ss.port 1

 527 root S ss.port 1

 529 root S ss.tcp 1

 530 root S ss.tcp 1

 532 root S ss.tcp 1

 533 root S ss.tcp 1

 534 root S ss.tcp 1

 535 root R ps -ef

Step 6. Run sample filter program using GDB.

/mnt/flash/bin/gdb data_conversion

Step 7. After running GDB, user can use GDB commands to control it.

In this example, first user should set argument for sample filter program as follows,

GNU gdb 5.0

Copyright 2000 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "powerpc-hardhat-linux"...

(gdb) set args 1

Argument ‘1’ means that this sample filter program is run for port #1.

Step 8. And then set breakpoint at the proper positions to stop program run.

Sena Technologies, Inc.

__

__-

- 14/15 -

For example, user can set break point on *e2s_thread function to check what is entering

from tcp port.

 (gdb) break *e2s_thread

Breakpoint 1 at 0x10003054: file data_conversion.c, line 255.

And then run program with ‘r’ command

 (gdb) r

Starting program: /usr2/data_conversion 1

[New Thread 539 (manager thread)]

[New Thread 538 (initial thread)]

[New Thread 540]

[New Thread 541]

[Switching to Thread 541]

Breakpoint 1, e2s_thread (arg=0x0) at data_conversion.c:255

255 {

(gdb)

Step 9. After for a while, program will be stopped at the entry point of *e2s_thread function.

User can run next step by entering ‘n’ (next) command.

(gdb) n

e2s_thread (arg=0x0) at data_conversion.c:257

257 int nread=0;

(gdb) n

261 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

(gdb) n

262 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);

(gdb) n

...

Step 10. When program run is reached at the line #274, user should make a tcp connection to a

serial port #1 of SS device and send any data to serial port #1 using any terminal emulation

program such as TeraTerm Pro or Hyper Terminal so that sample filter program reads data

from tcp buffer and keeps going to run next step.

...

(gdb) n

270 if (f2s_fd < 0) pthread_exit(NULL);

(gdb) n

272 while(!exit_flag) {

(gdb) n

274 nread = read(e2f_fd, buf, sizeof(buf));

(gdb) n

275 if (nread<=0) continue;

(gdb)

Step 11. By setting break point at line #275 and display variable buf[0], user can monitor data

coming from tcp port whenever there is a data from it.

 (gdb) display buf[0]

1: buf[0] = 97 'a'

(gdb) break 275

Breakpoint 2 at 0x10003160: file data_conversion.c, line 275.

(gdb) n

Sena Technologies, Inc.

__

__-

- 15/15 -

277 if (echo_flag) {

1: buf[0] = 97 'a'

(gdb) c

Continuing.

Breakpoint 2, e2s_thread (arg=0x0) at data_conversion.c:275

275 if (nread<=0) continue;

1: buf[0] = 50 '2'

(gdb) c

Continuing.

Breakpoint 2, e2s_thread (arg=0x0) at data_conversion.c:275

275 if (nread<=0) continue;

1: buf[0] = 51 '3'

(gdb)

Step 12. User can stop the GDB debugger using ‘quit’ command.

(gdb) quit

The program is running. Exit anyway? (y or n) y

To run sample filter program again, repeat from Step 5. after killing existing ss.port and ss.tcp daemon.

killall ss.port

killall ss.tcp

Fro more detail information about GDB debugger, please refer to GNU documentation page.

(http://www.gnu.org/software/gdb/documentation/)

http://www.gnu.org/software/gdb/documentation/

